A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines.

نویسندگان

  • Daniel H Chitwood
  • Ravi Kumar
  • Lauren R Headland
  • Aashish Ranjan
  • Michael F Covington
  • Yasunori Ichihashi
  • Daniel Fulop
  • José M Jiménez-Gómez
  • Jie Peng
  • Julin N Maloof
  • Neelima R Sinha
چکیده

Introgression lines (ILs), in which genetic material from wild tomato species is introgressed into a domesticated background, have been used extensively in tomato (Solanum lycopersicum) improvement. Here, we genotype an IL population derived from the wild desert tomato Solanum pennellii at ultrahigh density, providing the exact gene content harbored by each line. To take advantage of this information, we determine IL phenotypes for a suite of vegetative traits, ranging from leaf complexity, shape, and size to cellular traits, such as stomatal density and epidermal cell phenotypes. Elliptical Fourier descriptors on leaflet outlines provide a global analysis of highly heritable, intricate aspects of leaf morphology. We also demonstrate constraints between leaflet size and leaf complexity, pavement cell size, and stomatal density and show independent segregation of traits previously assumed to be genetically coregulated. Meta-analysis of previously measured traits in the ILs shows an unexpected relationship between leaf morphology and fruit sugar levels, which RNA-Seq data suggest may be attributable to genetically coregulated changes in fruit morphology or the impact of leaf shape on photosynthesis. Together, our results both improve upon the utility of an important genetic resource and attest to a complex, genetic basis for differences in leaf morphology between natural populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative genetic basis for leaf morphology is revealed in a set of precisely defined tomato introgression lines.

What causes the domesticated tomato Solanum lycopersicum to have sweet, juicy red fruit and large, compound leaves with narrow-tipped leaflets while its distant wild relative, the Peruvian Solanum pennellii, has small, soapy-smelling green fruit with an unpleasant flavor (Matsui et al., 2007) and small compound leaves with thick, rounded leaflets (see figure)? Thoroughly answering this question...

متن کامل

Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii.

Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidenc...

متن کامل

Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines.

Leaves are one of the most conspicuous and important organs of all seed plants. A fundamental source of morphological diversity in leaves is the degree to which the leaf is dissected by lobes and leaflets. We used publicly available segmental introgression lines to describe the quantitative trait loci (QTL) controlling the difference in leaf dissection seen between two tomato species, Lycopersi...

متن کامل

Resolving distinct genetic regulators of tomato leaf shape within a heteroblastic and ontogenetic context.

Leaf shape is mutable, changing in ways modulated by both development and environment within genotypes. A complete model of leaf phenotype would incorporate the changes in leaf shape during juvenile-to-adult phase transitions and the ontogeny of each leaf. Here, we provide a morphometric description of >33,000 leaflets from a set of tomato (Solanum spp) introgression lines grown under controlle...

متن کامل

The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population.

It has been recently demonstrated, utilizing interspecific introgression lines of tomato, generated from the cross between Solanum lycopersicum and the wild species Solanum pennellii, that the efficiency of photosynthate partitioning exerts a considerable influence on the metabolic composition of tomato fruit pericarp. In order to further evaluate the influence of source-sink interaction, metab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2013